

 Knowledge Base – Qoppa Java PDF API SDK & Server Products

 Search

 Linearizing existing PDF documents with Java

 /Java PDF Library [Deriving from jPDFProcess] / jPDFProcess: Create/Manipulate PDFs / Linearizing existing PDF documents with Java

 	

 February 21, 2014

	

 jPDFProcess: Create/Manipulate PDFs

 Q: Can Qoppa’s Java PDF library, jPDFProcess, create linearized PDF documents and save existing PDF documents as linearized?

A: Yes, jPDFProcess can create linearize PDF documents.

To linearize a PDF document with jPDFProcess, 2 simple lines of code do the trick:

	PDFDocument myPDF= new PDFDocument(“file.pdf”);
myPDF.saveDocumentLinearized(new FileOutputStream(“linearizedfile.pdf”));

PDFDocument myPDF= new PDFDocument(“file.pdf”);
myPDF.saveDocumentLinearized(new FileOutputStream(“linearizedfile.pdf”));

What is PDF linearization and why are PDF documents linearized?

A linearized PDF, also called sometimes “Web Optimized” or “Fast Web View” enabled PDF, is a PDF file that has all the objects ordered in a specific way and with a couple of additional special objects added. The linearized PDF format is completely compatible with the regular pdf format, and a viewer does not need to know anything about linearization to process a linearized PDF .

The purpose of linearization is so that a viewer that does understand the linearization format can display the first page in the document as quickly as possible over a potentially slow network connection and then to subsequently jump to any other individual page requested by the user as quickly as possible, without ever having to download data that is only required for other pages.

A linearized PDF file starts with a linearization dictionary, a cross reference table for all of the first page objects, a special PDF stream object called the hint stream, and then all of the objects needed to render the first page. After that all of the objects for all the other pages appear in the file grouped by the page they belong to or, if used by more than one page, in the shared object group. And finally any objects not necessarily needed for page rendering appear followed by a cross reference table for the non-first page objects.

The hint stream is a compact table that can tell a linearization aware viewer which objects are required for any one page, and the file offsets of each of those objects. That way the viewer need only download the first part of the file up to the end of the hint stream, and then send download requests for specific file segments to a web server to be able to display any other page the user may wish to view (e.g. by following a link in the bookmarks, etc.)

Suggested Articles
	Saving PDF for Fast Web View Display when streaming

	Library to optimize PDF documents

	Optimizing a PDF using advanced optimization settings

	Streaming efficiently a PDF document from a URL for viewing

	Fast web view when streaming large linearized PDFs

	How to resize pages in a PDF document with Java library jPDFProcess

 Related Articles

 	
 Sample Java Code to Print a PDF as Image

	
 PAdES PDF Avanced Electronic Signatures Support in Qoppa PDF SDK

	
 Merging signed PDFs with Java PDF SDK jPDFProcess

	
 Add Document TimeStamp (DTS) to a PDF document with Java

	
 Search & Redact Social Security Numbers SSN in a PDF with Java

	
 Can a digital signature in a PDF document have multiple linked widgets?

 Translate:
	
	
	
	
	
	
	

		
		Recent Articles

			
					PKCS12 Using “PBES2” Cipher not Support by Java Versions Below 8u301 or 11.0.1
									
	
					Integration with OAuth Microsoft Exchange Email to process incoming PDF documents
									
	
					“Unable to acquire access token” error when using Microsoft OAuth
									
	
					Maven dependency for Qoppa Java PDF SDK API 2022R1
									
	
					Create an Automated Workflow to Import Data into an XFA Dynamic Form
									
	
					v2022R1 jOfficeConvert Build Notes
									

		

 Popular Articles

 	
					Free Java PDF library alternative to iText

	
					Apply Digital Signature on a PDF document using USB hardware token PKCS 11

	
					How to resize pages in a PDF document with Java library jPDFProcess

	
					Sample Signed PDF with Digital Signature from a Java Recognized Certificate Authority

	
					Java PDF OCR library sdk

	
					Sample Java code to convert Excel to PDF using jOfficeConvert

	
					How can I add Qoppa Java PDF API as a Maven dependency?

	
					Maven dependency for Qoppa Java PDF SDK API 2022R1

	
					Maven dependency for Qoppa Java PDF SDK API 2021R1

	
					Code Sample: Convert PDF to Tiff in Java

		
		
Categories

				FAQ

	Java PDF Library [Deriving from jPDFProcess]
	jPDF Library Release History

	jPDFAssemble: Merge PDFs, Split PDFs

	jPDFFields: Import, Export Form Fields

	jPDFImages: Convert PDF To From Images

	jPDFPrint: Print PDFs

	jPDFProcess: Create/Manipulate PDFs

	jPDFSecure: Secure / Sign PDFs

	jPDFText: Extract Text From PDFs

	Java PDF Library [Other]
	jPDFOptimizer: Optimize PDFs, Reduce PDF Files Size
		jPDFOptimizer Release History

	jPDFPreflight: Validate Convert PDF/A, PDF/X
		jPDFPreflight Release History

	jOfficeConvert: Convert MS Word To PDF, Convert Excel to PDF
		jOfficeConvert Release History

	jPDFWeb: Convert PDF To HTML5
		jPDFWeb Release History

	FREE jPDFWriter: Write / Create PDFs

	Java PDF Visual Component
	jPDF Component Release History

	jPDFNotes: PDF Annotating Component

	jPDFEditor: PDF Editing Component

	jPDFViewer: PDF Viewing Component

	PDF Automation Server
	Workflow Nodes

	PAS Release History

	Web PDF Viewer & Markup

	Mule ESB

	Custom PDF Jobs

	Rest API

	Android PDF Toolkit – qPDF
	qPDF Toolkit Release History

	Evaluation

	Fonts

	Integration

	Licensing

	General

	Webstart Applications / Applets – Render, Print, Manipulate PDFs

	Videos

	Java

	Developer Newsletter

	Command Line Tools

	Qoppa News

	Archive

	Uncategorized

			

 See our PDF technology in action!
			By trying our end-user tools below:

Try PDF Studio

Try Android qPDF Notes

Privacy Policy

		
Links to Qoppa’s Main Website
			Java PDF SDK / API

PDF Viewing Component

PDF Studio for Mac, Windows, Linux

Android PDF Tools

PDF Automation Server

		
Contact Support
			
 If you do not find the answer to your question, email us .

		
Follow Us
			

		

 © Copyright, Qoppa Software - Reliable PDF Software for End-Users and Developers

	

